Functionally different GPI proteins are organized in different domains on the neuronal surface.
نویسندگان
چکیده
We have investigated the organization, on the plasma membrane and in detergent-insoluble membrane vesicles, of two neuronal glycosylphosphatidylinositol-anchored (GPI) proteins: Thy-1, a negative regulator of transmembrane signalling; and prion protein, whose rapid endocytosis and Cu(2+) binding suggest that it functions in metal ion uptake. Prion protein occurred on the neuronal surface at high density in domains, located primarily at the cell body, which were relatively soluble in detergent. Thy-1, although much more abundantly expressed on neurons, occurred at lower density over much of the surface of neurites (and in lower abundance at the cell body) in domains that were highly resistant to detergent solubilization. Detergent-insoluble membrane vesicles contained Thy-1 at a density similar to that on the neuronal surface. Vesicles containing each protein could be separated by immunoaffinity isolation; lectin binding showed that they were enriched in different glycoproteins. Our results demonstrate a structural diversity of the domains occupied by functionally different GPI proteins.
منابع مشابه
O-5: Identification of Novel ImmunodominantEpididymal Sperm Proteins Using CombinatorialApproach
Background: Alteration in the protein signatures of functionally immature testicular spermatozoa occurs during their journey through the epididymis. This leads to acquisition of sperm domain specific functions essential for successful fertilization. Epididymal sperm proteins are preferred targets for immunocontraception as well as in elucidating the causes of infertility. The Background of the ...
متن کاملPosttranslational modifications required for cell surface localization and function of the fungal adhesin Aga1p.
Adherence of fungal cells to host substrates and each other affects their access to nutrients, sexual conjugation, and survival in hosts. Adhesins are cell surface proteins that mediate these different cell adhesion interactions. In this study, we examine the in vivo functional requirements for specific posttranslational modifications to these proteins, including glycophosphatidylinositol (GPI)...
متن کاملSignal transduction via glycosyl phosphatidylinositol-anchored proteins in T cells is inhibited by lowering cellular cholesterol.
Glycosylphosphatidylinositol (GPI)-anchored proteins can deliver costimulatory signals to lymphocytes, but the exact pathway of signal transduction involved is not yet characterized. GPI-anchored proteins are fixed to the cell surface solely by a phospholipid moiety and are clustered in distinct membrane domains that are formed by an unique lipid composition requiring cholesterol. To elucidate ...
متن کاملExpression of unique sets of GPI-linked proteins by different primary neurons in vitro
We have surveyed the proteins expressed at the surface of different primary neurons as a first step in elucidating how axons regulate their ensheathment by glial cells. We characterized the surface proteins of dorsal root ganglion neurons, superior cervical ganglion neurons, and cerebellar granule cells which are myelinated, ensheathed but unmyelinated, and unensheathed, respectively. We found ...
متن کاملSpecific inhibition of GPI-anchored protein function by homing and self-association of specific GPI anchors
The functional specificity conferred by glycophosphatidylinositol (GPI) anchors on certain membrane proteins may arise from their occupancy of specific membrane microdomains. We show that membrane proteins with noninteractive external domains attached to the same carcinoembryonic antigen (CEA) GPI anchor, but not to unrelated neural cell adhesion molecule GPI anchors, colocalize on the cell sur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The EMBO journal
دوره 18 24 شماره
صفحات -
تاریخ انتشار 1999